Case Studies
    ANDOR
  • (5,807)
    • (2,609)
    • (1,767)
    • (765)
    • (625)
    • (301)
    • (237)
    • (163)
    • (155)
    • (101)
    • (94)
    • (87)
    • (49)
    • (28)
    • (14)
    • (2)
    • View all
  • (5,166)
    • (2,533)
    • (1,338)
    • (761)
    • (490)
    • (437)
    • (345)
    • (86)
    • (1)
    • View all
  • (4,457)
    • (1,809)
    • (1,307)
    • (480)
    • (428)
    • (424)
    • (361)
    • (272)
    • (211)
    • (199)
    • (195)
    • (41)
    • (8)
    • (8)
    • (5)
    • (1)
    • View all
  • (4,164)
    • (2,055)
    • (1,256)
    • (926)
    • (169)
    • (9)
    • View all
  • (2,495)
    • (1,263)
    • (472)
    • (342)
    • (227)
    • (181)
    • (150)
    • (142)
    • (140)
    • (129)
    • (99)
    • View all
  • View all 15 Technologies
    ANDOR
  • (1,744)
  • (1,638)
  • (1,622)
  • (1,463)
  • (1,443)
  • (1,412)
  • (1,316)
  • (1,178)
  • (1,061)
  • (1,023)
  • (838)
  • (815)
  • (799)
  • (721)
  • (633)
  • (607)
  • (600)
  • (552)
  • (507)
  • (443)
  • (383)
  • (351)
  • (316)
  • (306)
  • (299)
  • (265)
  • (237)
  • (193)
  • (193)
  • (184)
  • (168)
  • (165)
  • (127)
  • (117)
  • (116)
  • (81)
  • (80)
  • (64)
  • (58)
  • (56)
  • (23)
  • (9)
  • View all 42 Industries
    ANDOR
  • (5,826)
  • (4,167)
  • (3,100)
  • (2,784)
  • (2,671)
  • (1,598)
  • (1,477)
  • (1,301)
  • (1,024)
  • (970)
  • (804)
  • (253)
  • (203)
  • View all 13 Functional Areas
    ANDOR
  • (2,573)
  • (2,489)
  • (1,873)
  • (1,561)
  • (1,553)
  • (1,531)
  • (1,128)
  • (1,029)
  • (910)
  • (696)
  • (647)
  • (624)
  • (610)
  • (537)
  • (521)
  • (515)
  • (493)
  • (425)
  • (405)
  • (365)
  • (351)
  • (348)
  • (345)
  • (317)
  • (313)
  • (293)
  • (272)
  • (244)
  • (241)
  • (238)
  • (237)
  • (217)
  • (214)
  • (211)
  • (207)
  • (207)
  • (202)
  • (191)
  • (188)
  • (182)
  • (181)
  • (175)
  • (160)
  • (156)
  • (144)
  • (143)
  • (142)
  • (142)
  • (141)
  • (138)
  • (120)
  • (119)
  • (118)
  • (116)
  • (114)
  • (108)
  • (107)
  • (99)
  • (97)
  • (96)
  • (96)
  • (90)
  • (88)
  • (87)
  • (85)
  • (83)
  • (82)
  • (81)
  • (80)
  • (73)
  • (67)
  • (66)
  • (64)
  • (61)
  • (61)
  • (59)
  • (59)
  • (59)
  • (57)
  • (53)
  • (53)
  • (50)
  • (49)
  • (48)
  • (44)
  • (39)
  • (36)
  • (36)
  • (35)
  • (32)
  • (31)
  • (30)
  • (29)
  • (27)
  • (27)
  • (26)
  • (26)
  • (26)
  • (22)
  • (22)
  • (21)
  • (19)
  • (19)
  • (19)
  • (18)
  • (17)
  • (17)
  • (16)
  • (14)
  • (13)
  • (13)
  • (12)
  • (11)
  • (11)
  • (11)
  • (9)
  • (7)
  • (6)
  • (5)
  • (4)
  • (4)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • View all 127 Use Cases
    ANDOR
  • (10,416)
  • (3,525)
  • (3,404)
  • (2,998)
  • (2,615)
  • (1,261)
  • (932)
  • (347)
  • (10)
  • View all 9 Services
    ANDOR
  • (507)
  • (432)
  • (382)
  • (304)
  • (246)
  • (143)
  • (116)
  • (112)
  • (106)
  • (87)
  • (85)
  • (78)
  • (75)
  • (73)
  • (72)
  • (69)
  • (69)
  • (67)
  • (65)
  • (65)
  • (64)
  • (62)
  • (58)
  • (55)
  • (54)
  • (54)
  • (53)
  • (53)
  • (52)
  • (52)
  • (51)
  • (50)
  • (50)
  • (49)
  • (47)
  • (46)
  • (43)
  • (42)
  • (37)
  • (35)
  • (32)
  • (31)
  • (31)
  • (30)
  • (30)
  • (28)
  • (27)
  • (24)
  • (24)
  • (23)
  • (23)
  • (22)
  • (22)
  • (21)
  • (20)
  • (20)
  • (19)
  • (19)
  • (19)
  • (19)
  • (18)
  • (18)
  • (18)
  • (18)
  • (17)
  • (17)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (15)
  • (15)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (10)
  • (10)
  • (10)
  • (10)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • View all 731 Suppliers
Connect?
Please feel encouraged to schedule a call with us:
Schedule a Call
Or directly send us an email:
19,090 case studies
Case Study missing? Just let us know via Add New Case Study.
19,090 Case Studies Selected
USD 0.00
Buy This List
Compare
Sort by:
Deliver Results in Productivity. AUDI AG - FORCAM Industrial IoT Case Study
Deliver Results in Productivity. AUDI AG
Audi, a pioneering car manufacturer, operates press plants in Ingolstadt and Neckarsulm, Germany. The automotive industry has seen significant changes over the years, with niche products becoming increasingly important. To remain competitive, Audi needed to respond instantly to specific customer requests. The range of models available from Audi has increased, which has implications for the manufacturing of car body panels. It requires the production of more sophisticated pressed parts, involving the use of a wide range of tooling. This necessitates creating capacities and improving the efficiency and performance of the press plants. More than 1,500 employees work with state-of-the-art press machinery at Audi's plants. The independent subdivision is responsible for the distinctive Audi design in aluminium and steel, making it one of the most efficient plants in the whole company.
Download PDF
Dynomax Aerospace Supplier +20% OEE in 3 MONTHS - FORCAM Industrial IoT Case Study
Dynomax Aerospace Supplier +20% OEE in 3 MONTHS
The global aerospace industry is experiencing rapid growth, with a focus on production efficiency for both commercial and military projects. Aerospace suppliers like Dynomax and other manufacturers in the supply chain understand that staying ahead of the competition and meeting the growing need for finished products requires leaner production through technological investment. Dynomax, an aggressively growing aerospace supplier, rises to the challenge of smarter production and proactively drives greater capacity, speed to market, and overall competitiveness. The team determined that the performance of machines needed to be measured in real time to quickly recognize and correct errors, reduce waste and continuously optimize productivity. Key challenges included the collection of OEE / KPIs, full production transparency, identification of bottlenecks, Epicor ERP integration, machine utilization, and reduction in machine downtime.
Download PDF
Customer Spotlight
PD Peterka & Associates operates four distinct businesses under one roof, each with unique operational challenges and customer requirements. The company was using an outdated, homegrown system along with four other database and accounting applications that couldn't be integrated. This setup required each profit center to be managed separately, leading to inefficiencies. The primary challenges included managing materials flow, resourcing raw materials for short runs, ensuring on-time delivery, and maintaining quality at a competitive price. The company needed a single ERP solution that could handle the diverse needs of all four businesses, including robust Material Requirements Planning (MRP) capabilities and tight inventory control.
Download PDF
Some Companies Do the Impossible
Unique Manufacturing faced the challenge of producing mission-critical parts for deep-sea oil production that had to be absolutely perfect and delivered on time. The parts they produce are essential for large drilling and pipeline operations, and any delay in delivery could result in significant financial losses. The company needed a way to manage scheduling and their production process to meet these critical deadlines and ensure flawless quality control.
Download PDF
Realtrac Success Stories: Alliance Broach & Tool
Running a small to medium-sized machine shop business presents many challenges, including managing hundreds of customers while maintaining a tight, just-in-time operation. Alliance Broach & Tool, a company with over 35 years of experience, faced the challenge of growing their business in a tough economic climate. They needed to manage their operations efficiently to support their growth and maintain profitability. The company required a tool that could provide up-to-date information for quoting, costing, and managing projects as they moved through the operation. Additionally, they needed a solution that could help them manage their costs and improve their job planning, cost analysis, and floor operations.
Download PDF
SYSPRO Case Study: Suhor Industries
This ongoing drive toward quality growth and the necessity to become Y2K compliant drove the company to seek a new ERP software solution in 1998. Suhor had been experiencing the problems common to a company using an evolving set of inflexible software programs. Moreover, each location was responsible for backing up its own data. Without a central repository, a location crash and lack of data back-up would result in a loss of the data. According to Jeanette Geiser, Suhor Treasurer, the company quickly realized that future profitable growth could only be accommodated by centralizing financial information and consolidating data for budgeting analyses and control purposes.
Download PDF
SYSPRO Case Study: Floe International
Floe International faced challenges in managing their production and inventory processes efficiently. The company needed to streamline its operations to reduce paperwork, data entry, and improve production flow. Additionally, they required a system that could support their Lean manufacturing environment and provide real-time data for better decision-making.
Download PDF
Tractor Zoom
From 1,600+ auctioneers and dealers, Tractor Zoom receives data about each piece of equipment for sale. The data comes in many forms—from written descriptions to spreadsheets—and includes everything from make and model to engine hours. Different OEMs use different terms to refer to equipment parts, and these terms often contrast with the terms Tractor Zoom uses internally. Regardless of where the data comes from—or which terms are used— it all needs to be captured and cataloged in datasets for buyers and processed and standardized in a specific way. The Tractor Zoom team initially tried to do the work internally, putting in many hours behind computer screens to manually catalog data and pull in images and descriptions. As the company started to grow, its team quickly realized there was no way to keep up, says Matt Carstens, customer success manager. “We would’ve been hiring for six months to add at least 10 staff—or hiring people through a staffing agency that we still would’ve had to manage.”
Download PDF
Top U.S. bank uses Snorkel Flow for Rapid AI application Development
The bank faced a significant challenge in processing a large volume of documents for a time-sensitive use case. Hand-labeling the data required for this task was estimated to take over a month, which was not feasible given the urgency of the situation. The bank needed a solution that could expedite the data labeling process and enable the rapid development of AI applications to classify and extract information from their documents.
Download PDF
Top 3 US bank Leverages AI and NLP to streamline financial document processing
Analysts at this top 3 US bank spend hundreds of hours a year manually reviewing financial documents to find information on interest rate swaps. This manual process is time-consuming and takes away from their ability to assist customers proactively. The team recognized the potential of using AI and NLP to streamline 10-K processing but lacked the training data required to train a model that could automatically identify and extract interest rate swaps from 10-Ks accurately across multiple formats.
Download PDF
Engineering Perfect Puffed Snacks - Comsol  Industrial IoT Case Study
Engineering Perfect Puffed Snacks
Food companies face the challenge of achieving the right moisture and texture in puffed snacks to ensure customer satisfaction. The process of puffing rice involves complex physics, including mass, momentum, and energy transport, rapid water evaporation, material phase transition, pressure buildup, and plastic deformation. Companies need to optimize processing conditions to ensure consistent texture, flavor, moisture content, and food safety. The research team at Cornell University, led by Prof. Ashim Datta, aimed to model the dynamics and material behavior during the puffing of parboiled rice to address these challenges.
Download PDF
How Fast Do Elevated Temperatures Reach the Cell Interior? - Comsol  Industrial IoT Case Study
How Fast Do Elevated Temperatures Reach the Cell Interior?
The performance and durability of lithium-ion (Li-ion) batteries are heavily influenced by their operating temperature. Their performance decreases at low temperatures while the battery degrades quickly at high temperatures. This means that overall reliability is compromised, creating a potential safety issue. Industry research has led to standards regulating the ability of a battery to withstand fluctuations in temperature when it is in operation. In contrast, there has been much less focus on the temperatures that batteries are exposed to during the manufacturing process, which includes plasma pretreatment, UV curing, laser welding, ultrasonic joining, hot stacking, and hot gluing. A Li-ion battery may contain thousands of individual cells, which have to be stacked together. This is typically done through an assembling procedure that may involve various heat treatments, some of which can be extremely intense and expose the casing or other parts to high temperatures for short times. Gerd Liebig of NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Germany, explained, “It is already well known that certain processes such as welding greatly increase the temperature within a battery. What is not known is the extent to which such elevated temperatures could propagate within and compromise a cell.”
Download PDF
Let There Be Light: A Brighter Future for Oleds - Comsol  Industrial IoT Case Study
Let There Be Light: A Brighter Future for Oleds
OLEDs, despite their advantages, suffer from significant light loss and energy inefficiency. Researchers at Konica Minolta are working to address these issues by understanding and mitigating the complex plasmon coupling phenomenon, which accounts for 40% of the light lost in OLEDs. This phenomenon involves the interaction of light with surface plasmons at the interface between the cathode and the organic material, leading to energy dissipation as heat. The challenge is to find ways to reduce these losses and improve the overall efficiency and brightness of OLEDs.
Download PDF
Thermal Characterization of an Electronic Device with A Custom App - Comsol  Industrial IoT Case Study
Thermal Characterization of an Electronic Device with A Custom App
Simulation consultants are using custom applications as an effective way to communicate their work to clients. Instead of delivering a static report, they can now deploy a product that contains the intricacy of an unabridged mathematical model, with the clarity and usability of an app. This lets clients run their simulations independently. At BE CAE & Test, we have created such an app to simulate a surface-mount device (SMD). Whether devices use or convert energy, they must properly manage heat so that they continue to operate in a designated temperature range. An SMD is an example of one electronic system that clients ask us to model. We make use of COMSOL Multiphysics® software to investigate these systems due to the wide range of physics that can be taken into account and the ease with which one can couple them.
Download PDF
Addressing Oil Spill Cleanup Using Hydrophobic Meshes - Comsol  Industrial IoT Case Study
Addressing Oil Spill Cleanup Using Hydrophobic Meshes
Oil spills are urgent and unexpected events that cause significant damage to aquatic environments and marine life. Current methods for containing and recovering spilled oil, such as booms and skimmers, are often costly and only partially effective. These methods need to be deployed quickly to be effective, and even then, they often fail to recover most of the oil, which can sink to the sea floor. The collected oil-water mixture is often only partially usable, leading to further environmental concerns and wasted oil.
Download PDF
Enhancing Performance and Safety of Medical Implantable Devices with Multiphysics Simulation - Comsol  Industrial IoT Case Study
Enhancing Performance and Safety of Medical Implantable Devices with Multiphysics Simulation
The development of a device meant to assist or completely replace the functioning of the heart is undeniably complex. This design process involves immense challenges, from supplying power to the device to ensuring it does not interfere with normal biological functioning. Researchers at St. Jude Medical use multiphysics simulation to engineer LVADs, Left Ventricular Assist Devices, in an ongoing effort to improve the outlook and quality of life of patients with heart failure. The condition typically begins with the left side of the heart, as the left ventricle is responsible for pumping oxygen-rich blood throughout the body, a greater distance than the right ventricle, which pumps blood through the lungs. Often, in patients with a poorly functioning left ventricle, an LVAD can provide mechanical circulatory support. The ventricle assist device is one of the most complex machines ever implanted in a human being. An LVAD must circulate the entire human blood stream and support life, as well as be compatible with the internal environment of the human body. Thoratec, now part of St. Jude Medical, brought LVADs to a wide market in 2010, after years of clinical trials.
Download PDF
Promoting Industrial Innovation with Custom Simulation Apps - Comsol  Industrial IoT Case Study
Promoting Industrial Innovation with Custom Simulation Apps
Look at any industry today, from automotive design to consumer electronics, and you will find a common thread that binds them together: the demand for more innovative technology. The latest and greatest technologies are continuously surpassed by even more complex and intricate devices that offer advanced features and functionality. Numerical simulation tools are a viable solution to the challenge of creating more elaborate devices quickly, delivering results with real-world accuracy without the need for building prototypes for each design modification. Some organizations, however, may not have the resources to bring a simulation expert on board to help create and modify models. This is where simulation applications come in. These customized user interfaces are built around numerical simulations of physics-based systems and allow an end user to run multiphysics analyses set up for them by simulation specialists.
Download PDF
HPC-Enabled Simulation Aids in the Design of Customized Highpower Electrical Devices - Comsol  Industrial IoT Case Study
HPC-Enabled Simulation Aids in the Design of Customized Highpower Electrical Devices
BLOCK Transformatoren-Elektronik faced increasing difficulty in designing inductors and transformers with aging simulation software. The company needed to reduce the number of prototypes created before finalizing a design to save costs and improve services. The challenge was to meet precise specifications concerning working frequencies, product sizes and weights, electrical power losses, electrical insulation, and varying environmental conditions. Additionally, the equipment needed to have product lifetimes of 30 years. The company sought a solution that would allow them to quickly and accurately improve designs while reducing the number of physical prototypes.
Download PDF
Simulating Laser-Material Interactions - Comsol  Industrial IoT Case Study
Simulating Laser-Material Interactions
California-based LLNL oversees the National Ignition Facility (NIF), home to the world’s largest and most energetic laser. The giant machine—with 192 separate beams and 40,000 optics that focus, reflect, and guide those beams— can amplify emitted laser-pulse energy by as much as ten billion times and direct it towards a target about the size of a pencil eraser. The laser produces temperatures, pressures, and densities that are similar to those found in the cores of stars, supernovae, and large planets. Astrophysics and nuclear researchers use the giant laser to better understand the universe, utilizing such technologies as inertial confinement fusion (ICF), where hydrogen fuel is heated and compressed to the point where nuclear fusion reactions take place. However, repeated use of this powerful laser can damage the optics within the system. “The optics can be quite expensive,” says Matthews. “The high-power laser light generated by the NIF can damage some of the fused silica optics, creating little pits in the surface—similar to the ding you get when a rock hits your car’s windshield. We do everything we can to repair and recycle the damaged ones.” An example of two damaged optic surfaces before and after repair is shown in Figure 1.
Download PDF
Upgrading the Nuts and Bolts of the Electrical Grid for A New Generation - Comsol  Industrial IoT Case Study
Upgrading the Nuts and Bolts of the Electrical Grid for A New Generation
The modernization of the electrical grid to a 'smart grid' involves not only IT and embedded systems but also the critical 'nuts and bolts' components like transformers, cable joints, terminations, bushings, and fault current limiters (FCLs). These components are essential for the grid's reliability and efficiency. The challenge lies in engineering these parts to handle increased voltages and power ratings while minimizing size and cost. Additionally, the adoption of superconducting fault current limiters (SFCLs) faces technological and business hurdles, including the high cost of cooling and the complexity of integrating these devices into the grid.
Download PDF
Better Ways to Heat and Cool Buildings - Comsol  Industrial IoT Case Study
Better Ways to Heat and Cool Buildings
The heating and cooling of buildings account for nearly 50 percent of energy consumption in Europe, prompting researchers to seek alternatives to conventional technologies. One promising solution is adsorption-based heating and cooling systems driven by heat rather than electricity. This technology can utilize heat from solar collectors, waste heat from industrial facilities, or combined heat and power units, significantly reducing electricity consumption and CO2 emissions. However, the development of these systems is complex due to their discontinuous operating cycles, varying peak energy fluxes, and the dynamic behavior determined by complex heat and mass transfer phenomena. To realize their full potential, the technology must become more efficient, compact, and cost-effective.
Download PDF
Application Builder and COMSOL Server™: A Review - Comsol  Industrial IoT Case Study
Application Builder and COMSOL Server™: A Review
The challenge addressed by the Application Builder and COMSOL Server™ is the complexity and detail-oriented nature of traditional modeling tools. These tools often require significant expertise to operate, making it difficult for non-experts to interact with and utilize the models effectively. The need for a more intuitive and user-friendly interface that can present modeling results in real-time and be used in various scenarios such as lectures, demonstrations, and product simulations is evident. Additionally, there is a demand for a solution that allows models to be used as standalone applications or web resources, thereby broadening their accessibility and usability.
Download PDF
Boost Sales and Build Stronger Relationships with the Deployment of Simulation Apps - Comsol  Industrial IoT Case Study
Boost Sales and Build Stronger Relationships with the Deployment of Simulation Apps
Rick Beyerle, a senior scientist at GrafTech's Advanced Energy Technologies (AET) subsidiary, identified a significant challenge in the sales process of their carbon and graphite products. The sales team needed to build trust with prospective customers, often requiring a 'proof of concept' to establish credibility. However, creating these proofs of concept was resource-intensive, requiring Rick and his team to divert R&D resources to modify and rerun validated models for each customer's specific configuration. The sales team, untrained in numerical modeling, found it difficult to navigate the complex models, which featured hundreds of parameters and boundary conditions. This situation led to inefficiencies and delays, as the application engineers were instructed to prioritize live tests over time-consuming simulations.
Download PDF
Defying Convention to Achieve Faster Signal and Simulation Speeds - Comsol  Industrial IoT Case Study
Defying Convention to Achieve Faster Signal and Simulation Speeds
In the electronics and computer hardware industry, optimizing the design of high-speed interconnects in printed circuit boards (PCBs) is a significant challenge. As electronic devices become smaller, the size and spacing of package interconnects must be scaled down, making computational design optimization more time-consuming. Higher frequency interconnects consume more power, and the geometry and materials of these interconnects need to be redesigned to minimize power consumption and prevent signal loss. This is particularly crucial for PCBs, which are used in a wide range of electronic devices. Full-wave electromagnetic simulation is necessary to model signal propagation in these interconnects, but solving the complete set of Maxwell’s equations without simplifying assumptions is computationally intensive. This complexity is compounded by the need to account for non-negligible electromagnetic couplings and impedance mismatch in complex 3D structures, which can cause crosstalk and reflection, compromising signal integrity.
Download PDF
Precision Performance: the Pursuit of Perfect Measurement - Comsol  Industrial IoT Case Study
Precision Performance: the Pursuit of Perfect Measurement
The challenge for Brüel & Kjær is to design industrial and measurement-grade microphones and transducers with a known and consistent error range, even over extended periods. The company must meet diverse industry sound and vibration challenges, from traffic and airport noise to car engine vibration, wind turbine noise, and production quality control. This requires designing microphones and accelerometers that adhere to various measurement standards. The goal is to achieve high precision and accuracy in their devices, which is critical for their customers, including major companies like Airbus, Boeing, Ferrari, Bosch, and NASA.
Download PDF
Optimizing the Performance of Complex Building Façades - Comsol  Industrial IoT Case Study
Optimizing the Performance of Complex Building Façades
Dynamic, textural, and symbolic; whether they ambitiously defy gravity or grow organically from the landscape, iconic buildings frequently involve complex façades. Designed not only to protect, they also regulate variables such as thermal and visual comfort. From solar studies that allow optimization of the shading design in order to reduce cooling loads and maximize visual comfort, to the way in which fixing brackets for rainscreen cladding affect the integrity of the insulation, there are numerous challenges that can be resolved with the help of simulation.
Download PDF
Bringing Glucose Monitoring to New Levels through Integrated Sensor Design - Comsol  Industrial IoT Case Study
Bringing Glucose Monitoring to New Levels through Integrated Sensor Design
Close metabolic control through glucose monitoring is essential for persons with diabetes to maintain good health and avoid medical complications. However, the chemical reactions on the sensing strips used in glucose monitors are sensitive to environmental conditions and chemical interferences. Sensors are shipped worldwide, stored under uncertain conditions, and used by individuals with varying levels of knowledge and experience. Robust design is crucial for enabling sensors to survive these environments, deliver accurate results, and detect conditions that would cause errors. Multiphysics simulation is now used alongside experiments and calculations, enabling scientists to understand the chemical, electrical, and biological phenomena interacting in these systems so they can optimize their design and measurement methods.
Download PDF
Getting Touchyfeely with Touchscreen Design - Comsol  Industrial IoT Case Study
Getting Touchyfeely with Touchscreen Design
Cypress Semiconductor faced the challenge of ensuring that their touchscreen technologies perform flawlessly under a variety of conditions and applications. This includes smartphones, laptops, automotive environments, industrial applications, and home appliances. Each application requires a different design, and the touchscreens must track finger or stylus positions with high accuracy. The capacitive touchscreens need to determine the touch object's size, location, duration, and movement direction. The engineers needed to create multiple electrostatic simulations for various device geometries and parameters, referred to as a 'design box'.
Download PDF
Simulation-LED Strategy for Corrosion Prevention - Comsol  Industrial IoT Case Study
Simulation-LED Strategy for Corrosion Prevention
Corrosion is a significant issue costing billions annually, particularly affecting the transportation industry, including sea, air, and ground transport. The Naval Research Laboratory (NRL) is addressing this problem through fundamental research in corrosion science. The challenge lies in understanding the complex multiphysics problem of corrosion, especially pitting corrosion, which occurs due to electrochemical reactions and mass transport in an electrolyte solution. The irregular growth of corrosion pits due to the metal microstructure has not been adequately addressed in previous research. The goal is to develop new corrosion-resistant materials by understanding the microstructure-corrosion correlations.
Download PDF
Simulation Turns up the Heat and Energy Efficiency at Whirlpool Corporation - Comsol  Industrial IoT Case Study
Simulation Turns up the Heat and Energy Efficiency at Whirlpool Corporation
In terms of energy consumption, ovens have the most room for improvement of any appliance in the kitchen, with only 10 to 12 percent of the total energy expended used to heat the food being prepared. This is one of the reasons why Whirlpool Corporation, the world’s largest home appliance manufacturer, is exploring new solutions for enhancing the resource efficiency of their domestic ovens. Using a combination of experimental testing and finite element analysis (FEA), Whirlpool engineers are seeking solutions to improve energy efficiency by exploring new options for materials, manufacturing, and thermal element design. In partnership with the GREENKITCHEN® project, a European initiative that supports the development of energy-efficient home appliances with reduced environmental impact, researchers at Whirlpool R&D (Italy) are studying the energy consumption of their ovens by exploring the heat transfer processes of convection, conduction, and radiation. “Multiphysics analysis allows us to better understand the heat transfer process that occurs within a domestic oven, as well as test innovative strategies for increasing energy efficiency,” says Nelson Garcia-Polanco, Research and Thermal Engineer at Whirlpool R&D working on the GREENKITCHEN® project. “Our goal is to reduce the energy consumption of Whirlpool’s ovens by 20 percent.”
Download PDF
test test