Case Studies
    ANDOR
  • (5,807)
    • (2,609)
    • (1,767)
    • (765)
    • (625)
    • (301)
    • (237)
    • (163)
    • (155)
    • (101)
    • (94)
    • (87)
    • (49)
    • (28)
    • (14)
    • (2)
    • View all
  • (5,166)
    • (2,533)
    • (1,338)
    • (761)
    • (490)
    • (437)
    • (345)
    • (86)
    • (1)
    • View all
  • (4,457)
    • (1,809)
    • (1,307)
    • (480)
    • (428)
    • (424)
    • (361)
    • (272)
    • (211)
    • (199)
    • (195)
    • (41)
    • (8)
    • (8)
    • (5)
    • (1)
    • View all
  • (4,164)
    • (2,055)
    • (1,256)
    • (926)
    • (169)
    • (9)
    • View all
  • (2,495)
    • (1,263)
    • (472)
    • (342)
    • (227)
    • (181)
    • (150)
    • (142)
    • (140)
    • (129)
    • (99)
    • View all
  • View all 15 Technologies
    ANDOR
  • (1,744)
  • (1,638)
  • (1,622)
  • (1,463)
  • (1,443)
  • (1,412)
  • (1,316)
  • (1,178)
  • (1,061)
  • (1,023)
  • (838)
  • (815)
  • (799)
  • (721)
  • (633)
  • (607)
  • (600)
  • (552)
  • (507)
  • (443)
  • (383)
  • (351)
  • (316)
  • (306)
  • (299)
  • (265)
  • (237)
  • (193)
  • (193)
  • (184)
  • (168)
  • (165)
  • (127)
  • (117)
  • (116)
  • (81)
  • (80)
  • (64)
  • (58)
  • (56)
  • (23)
  • (9)
  • View all 42 Industries
    ANDOR
  • (5,826)
  • (4,167)
  • (3,100)
  • (2,784)
  • (2,671)
  • (1,598)
  • (1,477)
  • (1,301)
  • (1,024)
  • (970)
  • (804)
  • (253)
  • (203)
  • View all 13 Functional Areas
    ANDOR
  • (2,573)
  • (2,489)
  • (1,873)
  • (1,561)
  • (1,553)
  • (1,531)
  • (1,128)
  • (1,029)
  • (910)
  • (696)
  • (647)
  • (624)
  • (610)
  • (537)
  • (521)
  • (515)
  • (493)
  • (425)
  • (405)
  • (365)
  • (351)
  • (348)
  • (345)
  • (317)
  • (313)
  • (293)
  • (272)
  • (244)
  • (241)
  • (238)
  • (237)
  • (217)
  • (214)
  • (211)
  • (207)
  • (207)
  • (202)
  • (191)
  • (188)
  • (182)
  • (181)
  • (175)
  • (160)
  • (156)
  • (144)
  • (143)
  • (142)
  • (142)
  • (141)
  • (138)
  • (120)
  • (119)
  • (118)
  • (116)
  • (114)
  • (108)
  • (107)
  • (99)
  • (97)
  • (96)
  • (96)
  • (90)
  • (88)
  • (87)
  • (85)
  • (83)
  • (82)
  • (81)
  • (80)
  • (73)
  • (67)
  • (66)
  • (64)
  • (61)
  • (61)
  • (59)
  • (59)
  • (59)
  • (57)
  • (53)
  • (53)
  • (50)
  • (49)
  • (48)
  • (44)
  • (39)
  • (36)
  • (36)
  • (35)
  • (32)
  • (31)
  • (30)
  • (29)
  • (27)
  • (27)
  • (26)
  • (26)
  • (26)
  • (22)
  • (22)
  • (21)
  • (19)
  • (19)
  • (19)
  • (18)
  • (17)
  • (17)
  • (16)
  • (14)
  • (13)
  • (13)
  • (12)
  • (11)
  • (11)
  • (11)
  • (9)
  • (7)
  • (6)
  • (5)
  • (4)
  • (4)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • View all 127 Use Cases
    ANDOR
  • (10,416)
  • (3,525)
  • (3,404)
  • (2,998)
  • (2,615)
  • (1,261)
  • (932)
  • (347)
  • (10)
  • View all 9 Services
    ANDOR
  • (507)
  • (432)
  • (382)
  • (304)
  • (246)
  • (143)
  • (116)
  • (112)
  • (106)
  • (87)
  • (85)
  • (78)
  • (75)
  • (73)
  • (72)
  • (69)
  • (69)
  • (67)
  • (65)
  • (65)
  • (64)
  • (62)
  • (58)
  • (55)
  • (54)
  • (54)
  • (53)
  • (53)
  • (52)
  • (52)
  • (51)
  • (50)
  • (50)
  • (49)
  • (47)
  • (46)
  • (43)
  • (43)
  • (42)
  • (37)
  • (35)
  • (32)
  • (31)
  • (31)
  • (30)
  • (30)
  • (28)
  • (28)
  • (27)
  • (24)
  • (24)
  • (23)
  • (23)
  • (22)
  • (22)
  • (21)
  • (20)
  • (20)
  • (19)
  • (19)
  • (19)
  • (19)
  • (18)
  • (18)
  • (18)
  • (18)
  • (17)
  • (17)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (15)
  • (15)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (10)
  • (10)
  • (10)
  • (10)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • View all 737 Suppliers
Connect?
Please feel encouraged to schedule a call with us:
Schedule a Call
Or directly send us an email:
19,090 case studies
Case Study missing? Just let us know via Add New Case Study.
19,090 Case Studies Selected
USD 0.00
Buy This List
Compare
Sort by:
Simulating Lubrication Flow to Predict Traction Oil Distribution Inside a NuVinci® Product - Altair Industrial IoT Case Study
Simulating Lubrication Flow to Predict Traction Oil Distribution Inside a NuVinci® Product
Fallbrook Technologies Inc., a technology development company, was facing a challenge in improving oil flow within their patented NuVinci® transmission system. The transmission system is a crucial part of their product line, which includes urban mobility vehicles, cars and trucks, industrial equipment, and more. The oil flow within the system directly affects the transmission’s efficiency, durability, power, capacity, and cost. However, physically evaluating the design of such a complex transmission system was practically unfeasible. The company needed a cost-effective, efficient, and robust method to provide internal lubrication and predict the effectiveness of a design scenario. They also required an effective solver/software to guide the design process in the innovation process.
Download PDF
Hussmann India's Enhanced Simulation Accuracy with Altair AcuSolveTM - Altair Industrial IoT Case Study
Hussmann India's Enhanced Simulation Accuracy with Altair AcuSolveTM
Hussmann India, a provider of tailored food safety solutions, was facing a significant challenge in maintaining the highest performance and quality standards for their refrigerated display cases and refrigeration systems. The company had to conduct extensive analyses of their product designs to identify and rectify even the smallest of design errors early in the design cycle. The highly competitive and price-sensitive nature of the refrigeration industry necessitated the compression of design and development cycle times, while ensuring cost efficiency and uncompromised quality. Hussmann India was also under pressure to ensure that there would be no rise in temperature in the refrigerator due to infiltration, which would directly affect the total efficiency of the refrigerator display case. Another challenge was the cost and time spent on the experimental testing of the refrigerator.
Download PDF
Advanced Simulation of Seaflex Mooring System with ProteusDS - Altair Industrial IoT Case Study
Advanced Simulation of Seaflex Mooring System with ProteusDS
Dynamic Systems Analysis Ltd. (DSA) has been providing custom software solutions for the ocean engineering industry for over a decade. Their software, ProteusDS and ShipMo3D, are used to test virtual prototypes of vessels and equipment operating in ocean conditions. The challenge was to understand the dynamic effects of ocean current, wind, and waves on the Seaflex mooring system, a product of Seaflex AB. This system is custom made for each location based on the expected forces and conditions. The Seaflex system is used in a variety of applications including marinas, wave attenuators, navigational buoys, residential pontoons/docks, floating helicopter platforms, seaplane terminals, floating fish farms, floating solar energy parks, floating houses, wave energy converters, and more. The challenge was to estimate the effect of current, wind, and waves on the mooring and to predict the exact response of the mooring installation a priori to satisfy insurers or engineers.
Download PDF
Innovative Architectural Design through IoT: A Case Study of Zaha Hadid Architects - Altair Industrial IoT Case Study
Innovative Architectural Design through IoT: A Case Study of Zaha Hadid Architects
Zaha Hadid Architects, an international architectural design firm based in London, UK, was faced with the challenge of creating a design proposal for the Museum of the 20th Century that would complement the iconic Neue Nationalgalerie. The Neue Nationalgalerie, designed by Mies van der Rohe in 1968, introduced radical new concepts and refined structural detailing. The challenge for Zaha Hadid Architects was to reinvent a similarly radical approach by applying new advances in technology to generate structural and architectural expression. The firm's Computation and Design research group (co|de) was tasked with developing early-design methods that would enable a directed search for physically, economically, and ergonomically feasible solutions within a vast universe of architectural possibilities enabled by digital design and construction methods.
Download PDF
Optimising the COLLAPSECON C-400: A Case Study in IoT and Shipping Logistics - Altair Industrial IoT Case Study
Optimising the COLLAPSECON C-400: A Case Study in IoT and Shipping Logistics
The shipping and logistics industries are responsible for facilitating over 90% of global trade, utilizing an estimated 35 million containers worldwide. However, global trade deficits result in 1 in 5 containers being shipped empty, leading to losses of over $30 billion annually. CEC Systems’ COLLAPSECON® provides an innovative solution to this problem, with a collapsible container design that improves operational efficiency and reduces environmental impact. However, the COLLAPSECON® design faced challenges due to over-engineering to meet industry ISO standards and pass manufacture testing. The units were nearly three times heavier than a standard container, due to the addition of moving parts and unique structural components. The complex geometries used in the design were also incompatible with traditional manufacturing methods, potentially leading to increased manufacturing costs. To optimise the COLLAPSECON® C-400 design for mass production and operational use, CEC Systems partnered with The Singapore Institute of Manufacturing Technology (SIMTech).
Download PDF
SUNGJIN FO-MA's Use of AFDEX for Improved Quality and Productivity in Automobile Component Precision Forgings - Altair Industrial IoT Case Study
SUNGJIN FO-MA's Use of AFDEX for Improved Quality and Productivity in Automobile Component Precision Forgings
SUNGJIN FO-MA Inc., a global company specializing in cold forging, faced a significant challenge in the prediction of precision forging processes with springback. Precision forging is a process where tight tolerances are a must, and the phenomenon of springback has a significant influence on the final shape of the product. Conventional forging processes are followed by cutting or trimming to achieve the final shape of the desired product. However, in precision forging, the springback phenomenon has to be considered during process design. The company was particularly concerned with the forging process of the intermediate yoke, a critical steering component, where the springback phenomenon is predominant in the region between the two ears.
Download PDF
Engineering Design Using a Small Autonomous Robot for Student Education at Aichi University Technology - Altair Industrial IoT Case Study
Engineering Design Using a Small Autonomous Robot for Student Education at Aichi University Technology
The importance of practical education for industrial engineering has been gaining recognition globally. Aichi University Technology (AUT) in Japan has been implementing many effective educational programs for students to acquire practical skills and knowledge. Among these, robot designing is one of the most effective for engineering design. As part of this initiative, AUT participated in a demonstration test competition aiming for future Mars exploration - A Rocket Launch for International Student Satellites (ARLISS). The challenge was to design an autonomous robot that could be launched from a rocket, land safely, and then autonomously travel to a specified target. The design process involved the use of computer-aided tools (CAD, CAM, CAE) and the evaluation of the stress in the robot’s structure.
Download PDF
Topology Optimization and New Manufacturing Methods for Lightweight Design in Agricultural Engineering - Altair Industrial IoT Case Study
Topology Optimization and New Manufacturing Methods for Lightweight Design in Agricultural Engineering
Amazone, a producer of innovative agricultural technology, was faced with the challenge of redesigning a welded suspension component as a casting part, while improving its weight and durability properties. The component in question was a part of the trailed compact disc harrow, Catros-2TS, used for soil tillage. The original component was a complex welded part weighing 245 kg, with 16.5 m of weld seams needed to join the single parts. This made the production process time-consuming and costly. The challenge was not only to optimize the manufacturing process but also to increase the longevity of the component, as product longevity is a key purchase criterion for farmers. The equipment must be robust enough for harsh operating conditions, and design improvements must not lead to higher prices for the final product.
Download PDF
Developing an Injury Threshold for Human Brain Concussion using IoT - Altair Industrial IoT Case Study
Developing an Injury Threshold for Human Brain Concussion using IoT
The Bioengineering Department at Wayne State University in Detroit, Michigan, was faced with the challenge of developing a complete understanding of injury mechanisms for mild traumatic brain injury or concussions. The goal was to prevent or mitigate injury occurrence. Traumatic brain injuries constitute a significant portion of injury resulting from vehicle crash and sports collisions. The department aimed to develop strategies to prevent and mitigate these injuries, which can reduce the heavy emotional, economic, and social price of these injuries for future products. The department had previously developed head injury protection standards based on tolerance curves derived from animal concussion test acceleration results and cadaveric skull fractures. However, these standards could not account for the complex motion of the brain within a deformable skull, neglecting the contribution of angular head acceleration to injury causation and the directional sensitivity of the head.
Download PDF
Subros Optimizes Product Designs with Altair HyperWorks, Reducing Simulation Time and Prototyping Costs - Altair Industrial IoT Case Study
Subros Optimizes Product Designs with Altair HyperWorks, Reducing Simulation Time and Prototyping Costs
Subros Limited, a leading manufacturer of thermal products for automotive applications in India, faced significant challenges in meeting product delivery deadlines with agreed quality benchmarks. As a major supplier of AC units to various automotive segments, Subros had to continually upgrade their products to match the evolving designs of vehicles. The pressure of product development timelines was immense, as the launch time of vehicles was crucial for manufacturers. Subros initially used a CAE software tool for simulation to save time in the product development cycle. However, the software was not user-friendly, took a long time to simulate, and was prone to human errors, leading to further delays in product development and delivery. The team needed a robust, quick, reliable, and user-friendly simulation software product to overcome these issues.
Download PDF
Mando Softtech India Enhances Simulation Accuracy with Altair HyperWorks - Altair Industrial IoT Case Study
Mando Softtech India Enhances Simulation Accuracy with Altair HyperWorks
Mando Softtech India, a leading manufacturer of automotive component systems, faced significant challenges in maintaining the high performance and quality standards of their products. The company needed to conduct in-depth analysis of their product designs to identify and rectify even the smallest design errors early in the design cycle. The automotive industry being highly competitive and price sensitive, it was crucial for Mando India to compress their design and development cycle time and develop products with utmost cost efficiency without compromising on quality. The company had invested heavily in setting up the right infrastructure in-house with advanced product design, analysis, and simulation tools. However, they faced complex problems such as conducting accurate Hexameshing, generating 2D Meshing and 3D Meshing, and conducting Thermal simulation for ECU casing development. They were also struggling with Tetra and Volume tetra meshing and needed a reliable tool for structural and non-linear analysis.
Download PDF
Dynamic Simulation of Tool Drop on Swift020 UAS using RADIOSS®: A Case Study - Altair Industrial IoT Case Study
Dynamic Simulation of Tool Drop on Swift020 UAS using RADIOSS®: A Case Study
Swift Engineering, Inc., a product development company with over 30 years of experience in designing, developing, and building high-performance advanced composite vehicles, unmanned systems, and automated robotics, faced a challenge with their Swift020 Unmanned Aerial System (UAS). The challenge was to define the specification for the maximum weight of the maintenance tooling used on the Swift020 UAS. The concern arose from the fact that the flight surfaces of the UAS were minimum gauge, and heavy tools dropped on the structure could cause irreparable damage, downtime, and expensive component replacement. The objective was to determine the maximum maintenance tool weight that, if dropped from a nominal height of 0.762 meters, would not cause permanent damage to any part of the Swift020 UAS.
Download PDF
Optimizing Die-Casting Simulation and Design in Automotive Industry: A Case Study of U-Shin Automotive - Altair Industrial IoT Case Study
Optimizing Die-Casting Simulation and Design in Automotive Industry: A Case Study of U-Shin Automotive
U-Shin, a global automotive parts manufacturer, faced a challenge in die-casting simulation, result analysis, and design optimization for an automotive dead lock pin. The company specializes in automotive system appliances and mechatronics, producing a wide range of products including lock sets, electronic steering column locks, climate control panels, door latches, keyless entry, door handles, switches, power closure systems, and rear access modules. Many of these parts are manufactured with zamak, a zinc-based alloy. U-Shin's zamak foundry, one of the largest in Europe, produces approximately 10 tons of zamak per day. The company faced the challenge of optimizing over 100 tools per year, a process that is crucial for reducing time and cost, and for providing reliable solutions to customers in the automotive industry.
Download PDF
Efficient Design Procedures for Wideband, Low-profile Antennas Using Altair FEKO Electromagnetic Simulation Technology - Altair Industrial IoT Case Study
Efficient Design Procedures for Wideband, Low-profile Antennas Using Altair FEKO Electromagnetic Simulation Technology
The Antenna Research Group (ARG) at the University of Colorado-Boulder was tasked with evaluating the bottom side of a vehicle as an alternative to more conventional antenna placement positions for mounting high-frequency VHF antenna systems. The challenge was to develop a procedure for evaluating the feasibility of bottom placement of HF-VHF antennas on military vehicles. Low profile concealed antennas are often desired for diverse applications across many military and commercial vehicle platforms. However, these tall antennas increase vehicles’ vertical clearance and constitute an easy to identify visual signature, which is undesirable. A vehicle underside can be considered as a viable alternative place for concealment, since it provides enough space to avoid extreme antenna miniaturization. The challenge was to assess and compare propagation losses for antennas at various vehicle positions.
Download PDF
Characterizing the Murchison Widefield Array Beam Pattern with FEKO - Altair Industrial IoT Case Study
Characterizing the Murchison Widefield Array Beam Pattern with FEKO
The Murchison Widefield Array (MWA) radio telescope, a precursor to the Square Kilometer Array (SKA), was facing a challenge in characterizing its beam pattern. The beam pattern of the array could be determined using measurement, but this method was time-consuming and required specialized equipment. Therefore, a simulation-based approach was deemed the most practical. The beam pattern is a function of each of the 16 array elements as well as the operational frequency of the system. To model the pattern, each of the array elements had to be excited independently, and at different frequencies within the operation band. The full array beam pattern could then be modeled at an arbitrary steering direction. Previously, the simulation of the beam pattern was conducted using analytical models, but a more rigorous approach was needed where the full array geometry was simulated.
Download PDF
Accelerating Design Process with Multi-Disciplinary Optimization: A Daimler Case Study - Altair Industrial IoT Case Study
Accelerating Design Process with Multi-Disciplinary Optimization: A Daimler Case Study
Daimler, a leading producer of premium vehicles, has been using design optimization techniques for many years to maximize performance while minimizing material use and mass. However, the traditional processes of optimizing for different disciplines, such as crash and noise, vibration and harshness (NVH), independently can be slow to deliver a design solution that meets varied attribute targets simultaneously. During the development of a new vehicle variant, Daimler wanted to explore the potential of utilizing a multi-disciplinary approach to optimization (MDO), whereby several attribute performance targets are considered in a single optimization study. The focus of this project was a Mercedes-Benz die cast rear cross member that was not yet meeting its crash and NVH targets. The objective was to increase the stiffness of the casting while minimizing its mass.
Download PDF
Boosting Efficiency and Economy in Injection Mold Tools with Topology Optimization, CFD Simulation and 3D Printing - Altair Industrial IoT Case Study
Boosting Efficiency and Economy in Injection Mold Tools with Topology Optimization, CFD Simulation and 3D Printing
The toolmaking industry, particularly in Europe and America, has been facing increased pricing pressure due to growing competition from Asian countries. This has led to a need for innovative and high-quality solutions that offer higher productivity and significantly lower costs per part compared to standard solutions. One of the key parameters for higher productivity is the cycle time, which can be optimized through conformal tempering. However, the challenge lies in reducing cycle time without compromising on the quality of the parts produced. The shorter the cycle time, the greater the number of components that can be manufactured within the same period, significantly increasing the facility’s overall productivity and economic viability.
Download PDF
Altair SmartCore™ Delivers Data Driven Ecosystem to Make Pozuelo Del Alarcón a Smart City - Altair Industrial IoT Case Study
Altair SmartCore™ Delivers Data Driven Ecosystem to Make Pozuelo Del Alarcón a Smart City
The citizens of Pozuelo de Alarcón in Spain were seeking a cleaner, more efficient city. They aimed to protect the environment, decrease energy consumption, reduce CO2 emissions, and control expenses. The city faced challenges in financing and managing modern and efficient infrastructures. There was a need to improve the urban environment and the overall quality of life of the citizens, while keeping in mind environmental impact and sustainability. The city council of Pozuelo de Alarcón decided to set specific goals to become a Smart City. These goals included detecting and eliminating any excesses in water and electricity consumption, and controlling expenses. The overarching objective was the enhancement of the quality and performance of urban services to citizens’ lives through sustainability, community and growth.
Download PDF
Optimizing Indoor Climate Control with Simulation and Optimization - Altair Industrial IoT Case Study
Optimizing Indoor Climate Control with Simulation and Optimization
Kampmann GmbH, a leading specialist in heating, cooling, air-conditioning, and integrated building automation, faced the challenge of reducing physical prototypes and gaining early insights into system performance via a virtual development approach. The company's flagship products, KaTherm HK, a trench unit, and KaDeck, a ceiling system for heating and cooling, had to be customized to the needs of each customer and individual environment. This often required individual design adjustments that had to be tested and approved on site. Before the introduction of simulation, the air-conditioning systems were physically tested, which resulted in longer development time and required greater effort. The challenge was to find a solution that would allow for early testing of functionality and special requirements prior to production, thereby reducing the need for physical prototypes and shortening the development cycle.
Download PDF
Surrogate Models for Antenna Placement on Large Platforms: A Case Study - Altair Industrial IoT Case Study
Surrogate Models for Antenna Placement on Large Platforms: A Case Study
The Institute of High Performance Computing (IHPC) was faced with the challenge of developing cost-effective and innovative approaches for modelling, diagnosing and solving electromagnetic compatibility (EMC) problems. The complexity of the electromagnetic (EM) system and environment was ever-increasing, and the institute was tasked with handling electrically-large and multi-scale EM problems such as the antenna placement on large platforms. Additionally, they had to deal with multiphysics problems such as the electrical-thermal-mechanical analysis of composite materials. In a specific project, the institute needed an efficient modelling tool to identify optimum antenna positions and minimize interference between various antennas on electrically large platforms. The geometric model of a proprietary antenna was difficult to obtain from the vendor, necessitating the development of a surrogate model to represent it in the antenna placement simulations on the platform. The antenna-on-platform problem was both electrically-large and multi-scale, and could no longer be practically solved with a fullwave only method.
Download PDF
Innovative Drone Propulsion Design using Model-Based Development - Altair Industrial IoT Case Study
Innovative Drone Propulsion Design using Model-Based Development
Kappa Electronics, a consulting firm specializing in motor control systems, was approached by a customer seeking assistance with controlling the motor for a new drone design. The challenge was to develop a robust motor control system for drone applications. The control system needed to be able to handle motor frequencies ranging from 40 hertz to 2000 hertz, and perform well across a wide range of torques and parameter variations. The use of a shaft sensor to get the angle of the rotor flux with regards to the stator frame was ruled out due to cost and weight considerations. The challenge was further compounded by the need to ensure that the drone would not drop from the sky under any conditions.
Download PDF
Sujan CooperStandard's Success in Achieving Lightweight and Performance Targets with Altair - Altair Industrial IoT Case Study
Sujan CooperStandard's Success in Achieving Lightweight and Performance Targets with Altair
Sujan CooperStandard, a leading manufacturer of anti-vibration NVH products for automotive companies, faced significant challenges due to the stringent environmental norms and government policies related to pollution control. The automotive industry's pressure to reduce vehicle weight to minimize pollution and increase efficiency put the company under immense pressure to optimize designs and reduce the weight of products and components. Additionally, the fierce competition among automotive companies to launch new products quickly added to the pressure. Traditional methods of designing, developing, and testing products were no longer sufficient to meet the aggressive deadlines set by automotive companies. Sujan CooperStandard needed state-of-the-art software CAE solutions to reduce new product development time and cost while maintaining the product quality standards set by their clients.
Download PDF
Addressing Automotive Design Development Challenges Through Simulation Driven Platform: A Case Study on Endurance Technologies - Altair Industrial IoT Case Study
Addressing Automotive Design Development Challenges Through Simulation Driven Platform: A Case Study on Endurance Technologies
Auto Original Equipment Manufacturers (OEMs) are increasingly expecting their suppliers to move up the value chain and become development partners. This involves suppliers participating in joint Research & Development (R&D) activities from the conceptual stage, adopting a more collaborative approach to the entire product development process. The key factors for automotive supplier competitiveness include reduced product development time, first-time-right products, and high-value offerings with superior technology at affordable costs. However, automotive suppliers face challenges in having in-house simulation capabilities compared to OEMs due to budget constraints and difficulties in hiring and retaining expert manpower. Access to relevant data to validate designs and establishing robust virtual/test methodologies to match OEM expectations is another concern for suppliers.
Download PDF
Altair SmartCore™ Enables Real-Time Foundation Monitoring to Omnifor - Altair Industrial IoT Case Study
Altair SmartCore™ Enables Real-Time Foundation Monitoring to Omnifor
In the western part of the Netherlands, the soil has insufficient bearing capacity to allow for the construction of buildings and houses. To overcome this issue, buildings in this area have been built on timber pile foundations. These foundations have to be fully submerged in water to avoid pile deterioration from rotting and fungi. Property owners were seeking a way to monitor the structural condition of these timber pile foundations to optimize the timing of inspections and maintenance work. However, visual inspections of buildings and structures were often not conducted frequently enough, as they tend to be time-consuming and costly. For local governments, housing corporations, and building owners or managers, knowing the condition of their assets and being informed of any structural changes is key to ensure safety, schedule preventive maintenance, and plan adequately for future investments.
Download PDF
Creating a Safe and Sustainable Fun Utility Vehicle (FUV) with IoT - Altair Industrial IoT Case Study
Creating a Safe and Sustainable Fun Utility Vehicle (FUV) with IoT
Arcimoto, a company founded in 2007 with the mission to build sustainable transportation systems, faced a challenge in creating an optimized platform for their Fun Utility Vehicle (FUV). The FUV was designed to be a three-wheeled, all-electric commuter vehicle that combined the fun-factor and efficiency of a motorcycle with the stability and protection of a car. The challenges included creating a space frame enclosure for protection, a rear swing arm that could handle load requirements, and maintaining the visual design of the vehicle. As a start-up, Arcimoto also faced budget constraints and the pressure to generate interest in the marketplace and among investors. The engineering team had to ensure the vehicle was strong enough to withstand road conditions, and they also wanted to adhere to cross-industry safety tests, such as the roof crush test, to instill confidence in their product.
Download PDF
Optimizing Structural Strength for High-performance Bikes with IoT - Altair Industrial IoT Case Study
Optimizing Structural Strength for High-performance Bikes with IoT
Argon 18, a high-performance bike manufacturer, aimed to develop a bike that was stiffer, highly integrated, more aerodynamic, and provided greater efficiency. The challenge was to create a lightweight bike without compromising on structural strength and power. The weight of the product could be the defining difference in the competitive cycling industry. The team’s requirement was for the stiffest bike possible while getting the best aerodynamic results, as the rider would expend a huge amount of power during the track event. Making the bike more aerodynamic often results in making the shape thinner, hence the challenge was to make the frame stiff while at the same time balancing the structure‘s strength and the rigidity. An important aspect of the project was the development of a new aluminum stem to be used by Mr. Hansen in the Flying Lap event which is achieved by the fastest lap from the moving start. The stem would need to be seamlessly integrated to the bike frame, while being firmly fixed to the fork insert.
Download PDF
OptiStruct® Facilitates Creation of Life-form Inspired Table for IL Hoon Roh - Altair Industrial IoT Case Study
OptiStruct® Facilitates Creation of Life-form Inspired Table for IL Hoon Roh
The challenge was to create an organic-like table structure inspired by natural life forms of Radiolaria. IL Hoon Roh, a renowned architect and designer, was particularly intrigued by the way Radiolaria, a type of zooplankton, forms itself by deliberately creating a hole in its membrane. He began a series of objects known as the “Radiolaria Experiment”, starting with the Fabric Table R (Fabric Table Radiolaria), where he applied a three-dimensional structure to his work by hand-stretching a piece of cloth to create a 3D organic form. However, he was not completely satisfied with the seventh experiment in the series, Table R Ex07. Although he achieved the desired shape, the finished object lacked the intricate parts he wanted to depict and was not structurally perfect.
Download PDF
Optimizing Manufacturing Process and Design in Investment Casting: A Case Study of Wisconsin Precision Casting Corporation - Altair Industrial IoT Case Study
Optimizing Manufacturing Process and Design in Investment Casting: A Case Study of Wisconsin Precision Casting Corporation
Wisconsin Precision Casting Corporation (WPC), a precision manufacturer of investment castings, was faced with the challenge of reducing costs of regenerative turbine pump cover investment castings. The challenge was to optimize the structural design and manufacturing process to achieve this goal. The regenerative turbine pump cover was a critical component that required high pressure and close tolerances to perform efficiently. The goals for the redesign were to reduce material usage in the pump’s cover, maintain original strength and performance, and improve casting efficiency. The challenge was further compounded by the need to adapt to evolving trends in casting to meet the demands of various industries and customers.
Download PDF
Improving Pedestrian Comfort in Quinta Torre with AcuSolve Computational Fluid Dynamics - Altair Industrial IoT Case Study
Improving Pedestrian Comfort in Quinta Torre with AcuSolve Computational Fluid Dynamics
The construction of the Quinta Torre, a skyscraper in Madrid, presented a unique challenge due to the city's naturally occurring wind loads. These wind loads not only impact the construction of the building but also cause discomfort for pedestrians walking by or staying near the building. The challenge was to predict wind conditions on the ground floor, identify problem areas with potentially stronger wind, and implement counteractive measures in the tower design. Detailed flow studies were required to identify areas of possible discomfort or danger for pedestrians and find optimal design solutions. The project leads needed this information prior to concluding the wind tunnel tests, which could take up to six months.
Download PDF
Pioneering Real Wireless Power Delivery at Ossia Inc.: A Case Study - Altair Industrial IoT Case Study
Pioneering Real Wireless Power Delivery at Ossia Inc.: A Case Study
Ossia Inc., a company revolutionizing the mobility and connectivity of people and industries, faced a significant challenge in demonstrating the safe transmission of power wirelessly from 2-3 meters away. The company's patented wireless power Cota® technology, which is delivered much like WiFi, needed to be proven safe for humans and within the Federal Communications Commission (FCC) mandated Specific Absorption Rate (SAR) limit of 1.6 watts per kilogram. The technology was designed to provide real wireless power through the air and over a distance, even while the device is in motion. However, the safety of this technology was paramount, especially considering the potential effects on objects or living beings that could unknowingly walk into the path of the wireless power transmission.
Download PDF
test test