Comsol Case Studies Capacitively Coupled Plasma Analysis
Comsol  Logo

Capacitively Coupled Plasma Analysis

Comsol
Analytics & Modeling - Digital Twin / Simulation
Analytics & Modeling - Predictive Analytics
Semiconductors
Electronics
Product Research & Development
Process Control & Optimization
Digital Twin
Software Design & Engineering Services
System Integration
The multiphysics nature of plasmas presents enormous challenges for numerical simulations; analysis of the CCP process presents added difficulty due to the existence of a plasma sheath, the dynamic behavior of the plasma, and the large number of RF cycles required to reach a periodic steady state. Power deposition into the plasma is highly non-linear and the strong gradient of the electric field in the plasma sheath may lead to numerical instabilities unless a sufficiently fine mesh is applied. Typical CCP reactors may also contain sharp geometric corners that can cause a substantial local electric field that provide unphysical ion fluxes.
Read More
AltaSim Technologies, based in Columbus, Ohio, specializes in advanced simulation technologies. The company focuses on providing high-fidelity simulations for complex physical phenomena, including plasma processes. AltaSim Technologies employs a team of experts in various fields of engineering and physics to deliver cutting-edge solutions for their clients. Their expertise in multiphysics simulations allows them to tackle challenging problems in industries such as semiconductors and electronics. By leveraging tools like COMSOL Multiphysics, AltaSim Technologies aims to enhance the development and optimization of advanced manufacturing processes.
Read More
AltaSim Technologies has performed one- and two-dimensional simulations of low-frequency RF discharges in axisymmetric CCP reactors for Maxwellian and non-Maxwellian cases using COMSOL Multiphysics. Electron transport properties and Townsend coefficients were calculated using the two-term Boltzmann approximation as a preprocessing step to the numerical analysis of the plasma. Ion densities are shown in Figure 1 for a 1D simulation of a non-Maxwellian plasma. Extensions of the model to analyze the plasma behavior for a Maxwellian plasma in a 2D case are shown in Figures 2 and 3. The simulations incorporate the multiphysics nature of plasmas and consequently can be used to assist with the development of new CCP processing technology.
Read More
AltaSim Technologies successfully performed one- and two-dimensional simulations of low-frequency RF discharges in axisymmetric CCP reactors.
The simulations incorporated the multiphysics nature of plasmas, addressing the challenges posed by plasma sheaths and dynamic behavior.
Electron transport properties and Townsend coefficients were calculated using the two-term Boltzmann approximation, enhancing the accuracy of the simulations.
Download PDF Version
test test